

Validation of Six Years of Mid-Topospheric AIRS CO₂

Edward Olsen¹, Moustafa Chahine¹, Luke Chen¹, Xun Jiang², Thomas Pagano¹ and Yuk Yung³

¹ Science Division, Jet Propulsion Laboratory, Caltech
 ² Department of Earth & Atmospheric Sciences, Univ. of Houston
 ³ Division of Geological & Planetary Sciences, Caltech

NASA Sounding Science Meeting, May 4-7, 2009

Outline

♦ Validation

- **♦ AIRS Mid-Tropospheric CO₂ Averaging Kernels**
- **♦** Aircraft profiles of CO₂ concentration
 - → Direct validation of satellite retrievals
- **♦ CONTRAIL CO₂ samples at altitudes 10.5 km to 12.5 km**
 - → Validate amplitude, phase of seasonal variations and interannual trends as function of latitude
- - → Validate phase of seasonal variations and interannual trends; allows estimation of drawdown in PBL
- **♦ Conclusions**
- ♦ An Encore

Representative AIRS Mid-Trop CO₂ Averaging Kernels

AIRS Sensitivity

 Peak sensitivity altitude varies slightly with latitude and season:

Tropics: 285 hPaPoles: 425 hPa

Width at half-maximum is
 400 hPa, spanning:

Tropics: 120 hPa to 515 hPa
 Poles: 235 hPa to 640 hPa

 Tails of averaging kernels intrude into stratosphere, where air is older than in troposphere by an amount that varies with latitude

(~ 1 yr in tropics; ~5 yrs at poles).

• Impact: 1-3 ppm near the poles.

Aircraft Profiles

- ♦ Direct validation of satellite retrievals
 - Ideal characteristics:
 - ✓ Spiral flight path
 - ✓ Altitude range from near surface to 150 hPa (13.5 km)
 - ✓ Coincide with the satellite overpass

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Atmospheric Infrared Sounder

Aircraft Profiles are Best Available Validation

•SPURT flights in April 2003:

•Maximum Altitude: 13.7 km

•Pressure Range: 800 to 140 hPa

•INTEX-NA flights in July 2004: ~ 400 hPa, spanning:

•Maximum Altitude: 10.7 km

•Pressure Range: 800 to 240 hPa

- •Convolve the aircraft profiles with the AIRS sensitivity functions to arrive at a single number to compare to the AIRS result. Extended the aircraft profiles to higher altitudes, assuming constant CO₂ concentration beyond highest altitude.
- •Compared to average of same day AIRS retrievals within 500 km radius.

AIRS CO₂ Validation via Aircraft CO₂ Profiles

Contours are NCEP 500 mb geopotential height.
Arrows are NCEP 500 mb wind.

Comparison of AIRS CO₂ Collocated with INTEX-NA Aircraft Data

Numbers in parentheses are number of same-day AIRS retrievals collocated within a radius of 500 km which are averaged for comparison to convolved aircraft profile. CO₂ (ppm)

CONTRAIL CO₂ Samples at Altitudes Between 10.5 km and 12.5 km

- Provide a long-term history for 30°S ≤ latitude ≤ 30°N over the Western Pacific Ocean at an altitude near that of the AIRS sensitivity maximum for the duration of the mission
 - Validate:
 - ✓ Amplitude and phase of seasonal variations
 - ✓ Latitude-dependent interannual trend

Atmospheric Infrared Sounder

<u>contract Measurements</u> <u>provide long timeline</u> <u>and wide latitude coverage</u>

Pasadena, California

•CONTRAIL flights over ocean between Sidney and Tokyo:

•Cruising Altitude: 10.5 - 12.5 km

•Pressure Range: 240 to 180 hPa

•Latitude Range: 30°S to 30°N

Longitude Range: 135°W to 153°W

•Flight Periodicity: ~ twice/month

•Sample Spacing: ~ 500 km

- Direct comparison of CONTRAIL flask samples with average of collocated AIRS retrievals.
- Collocated AIRS retrievals are within 250 km radius and 4 hrs of flight.

AIRS CO₂ Comparison to CONTRAIL CO₂ Measurements

Time Series for AIRS CO₂ and CONTRAIL Aircraft Data

(in 10°x10° boxes at extremes of latitude for cruising altitude)
lata are 7-day averages: CONTRAIL data are individual measurement

Time Series for Difference of Collocated AIRS CO₂ and CONTRAIL Aircraft Data

(at least 3 AIRS retrievals collocated within 250 km radius & 4 hrs)

Over 5.25 years, bias ~ 0.2 ppm, stdev < 2 ppm and trend difference < 0.015 ppm/yr

Difference Between Collocated AIRS CO₂ and CONTRAIL Aircraft Data as a Function of Latitude

(at least 3 AIRS retrievals collocated within 250 km radius & 4 hrs)

Over 5.25 years, bias ~ 0.03 ppm, stdev < 2 ppm and no apparent latitude dependence

PDF of Difference Between Collocated AIRS CO₂ and CONTRAIL Aircraft Data

(at least 3 AIRS retrievals collocated within 250 km radius & 4 hrs)

TCCON Daytime Cloud-Free Column Average CO₂ Measurements

♦ Provide a history of column average CO₂ at widely scattered locations around the globe

Validate:

- ✓ Amplitude and phase of seasonal variations
- ✓ Interannual trend at select locations around globe
- ✓ Allow estimation of seasonal vegetative drawdown of CO₂ in PBL

Atmospheric Infrared Sounder

Comparison of Averaging Kernels for AIRS Mid-Trop CO₂ and TCCON FTS

AIRS Sensitivity

 Mid-latitude peak sensitivity altitude changes minimally with season:

Summer: 300 hPaWinter: 330 hPa

 Width at half-maximum broadens slightly in winter, spanning:

•Summer: 125 hPa to 515 hPa (390)

•Winter: 150 hPa to 565 hPa (415)

FTS Sensitivity

- Kernel is broad peak covering the full atmospheric column; excellent for determining the column average CO₂
- In particular, high sensitivity in the PBL, the location of maximum CO₂ variability.
- Data are daytime, clear sky

Jet Propulsion Laboratory Comparison of 7-Day Averages of Collocated California Institute of Technology **AIRS Mid-Trop CO₂ and Park Falls FTS** Pasadena, California **Atmospheric Infrared Sounder**

AIRS daytime data collated within radius of 500km of Park Falls Average of Selected Park Falls Pre-Release Data from Paul Wennberg & Gretchen Aleks

Pasadena, California

Comparison of Daily Averages of Collocated California Institute of Technology AIRS Mid-Trop CO₂ and Park Falls FTS

AIRS daytime data collated within radius of 500km of highest quality Park Falls data taken within ± 2 hours of AIRS overpass

National Aeronautics and Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Atmospheric Infrared Sounder

Comparison of 7-Day Averages of AIRS Mid-Trop CO₂ and Daily TCCON FTS

Validation of AIRS CO2 Growth Trends

	in situ	AIRS	AIRS – in situ
Time Series	Rate/std	Rate/std	Rate
	ppm/yr	ppm/yr	ppm/yr
AIRS 60S-60N (1/03 – 12/08)		2.02 ± 0.08	
CONTRAIL 30S-30N (1/02 – 12/07)	2.01 ± 0.04	1.98 ± 0.05	-0.03
CONTRAIL $25S \pm 5^{\circ} (1/02 - 12/07)$	1.98 ± 0.05	2.07 ± 0.03	+0.09
CONTRAIL $25N \pm 5^{\circ} (1/02 - 12/07)$	1.96 ± 0.14	1.96 ± 0.08	+0.00
Shemya $53N (1/02 - 12/07)$	1.97 ± 0.40	2.03 ± 0.11	+0.06
Sand $28N(1/02-12/07)$	1.91 ± 0.21	1.96 ± 0.09	+0.05
Ascension 8S $(1/02 - 12/07)$	2.05 ± 0.04	1.98 ± 0.03	-0.07
Mauna Loa 20S (1/02 – 12/08)	1.94 ± 0.12	1.95 ± 0.01	+0.01
Crozet $46S (6/02 - 12/07)$	1.95 ± 0.03	2.17 ± 0.05	+0.22
Macquarie 54S (1/02 – 12/07)	1.98 ± 0.03	2.11 ± 0.07	+0.13

Summary of growth rates per year and the differences between AIRS and several in situ measurements

National Aeronautics and Space Administration

AIRS Individual Level 2 Mid-Trop CO₂ within 6-hour intervals

Pasadena, California

Conclusions

- ♦AIRS middle tropospheric CO₂ long term trends and seasonal variations are consistent with in situ measurements over different spatial, temporal scales from 30°S to 80°N with standard deviation better than 2 ppm
- ♦ AIRS CO₂ retrievals are valuable as a tracer to study concentration, distribution and transport of CO₂ in the free troposphere and validate coupling of the atmospheric physics and dynamics in chemistry transport models
- **♦ Need more high-quality in situ validation measurements**
 - ♦ There are ~5,000 radiosonde launches/day
 - ♦ Desire 10% (500) CO₂ profiles/day around the globe
 - **♦ Require Southern Hemisphere expanded coverage**

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Atmospheric Infrared Sounder

And Now For Something Completely Different, But Very...

Diurnal Variation of AIRS Mid-Trop CO₂ within 500km radius of Park Falls FTS

Lat: 45.9N; Lon: 90.3W
Data Span: Sept 2002 thru Dec 2008

<AIRS 7-day daytime> - <AIRS 7-day nighttime> within 500 km radius of Park Falls FTS

Diurnal Variation of AIRS Mid-Trop CO₂ within 500km radius of Park Falls FTS

Lat: 45.9N; Lon: 90.3W Sept 2002 thru Dec 2008

∆CO2 (D-N), ppm

There is NO Correlation with PTropopause

Atmospheric Infrared Sounder

AIRS sensitivity for retrieving CO₂ California Institute of Technology Pasadena, California AIRS can do it for three atmospheric levels

- Mid-troposphere (Completed) 2002 to present Accuracy of 1 - 2 ppm
- Stratosphere (2009)
- Near-Surface (2010)